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: Inference and Discovery ]
N in an Exploratory Laboratory b
’
) Valerie Shute
“ Robert Glaser
y Kalyani Raghavan :
3 3
Y -3
[}
: Introduction :
: Formulating and testing hypotheses using observations and empirical findings is '_-
3
= not only central to scientific work, but also to the acquisition of knowledge in '
7 .
j general. As new information is obtained and hypotheses are inferred, they serve as a }
P ;
d basis for confirming or refuting perceived regularities and lawful relationships. In the :'.
. research described here, we employ a computer laboratory, which we call an *
'
: intelligent discovery world, to study the strategies students use to explore this |
b environment. Our interest focuses on studying individual differences In strategies of
4 inference and discovery, Including comparative studies of successful and less N
) ) ~
Y -~
‘N successful learners, and eventually studies of tutorial assistance to discovery skills. \
- >
. The central problem of induction and hypothesis formation is to carry out
: cognitive performances that ensure that inferences drawn are plausible and relevant
. to the world or system being observed. The plausibility of Inductions and stated
2 hypotheses can be determined with reference to Kknowledge obtained about the
<
L4
' system. Thus the students’ process of inference depends on the application of
observation, experimentation, and data organization that enable the specification and
[}
' ._1
|
b P N 'r.:a_;.r;_.-,: o !'u'_:d",;c"_:l',;-';-‘,;d‘.;-f Ty _..



VWOV VUV WU T TR TR O R Y O G v R S W Y VO L T WV T T T TR R AL N OIS R T P T Y T N T A SO
Shute, Glaser, Raghavan 2 February 1988

testing of the Kknowledge obtained through experiments, hypotheses, and
confirmations. As Holland, Holyoak, Nisbett and Thagard (1986) wrote: ®"The study

of induction, then, Is the study of how knowledge is modified through its use® (p. 5).

The kind of learning that we are considering has a reasonably long research
history in experimental psychology, mostly in the context of laboratory and
knowledge-lean tasks. In recent years, research has taken place in more complex
situations, as well as in studies of machine learning, experimental studies, and
computer simulation of problem solving and discovery tasks (Klahr & Dunbar, 1987,
Kuhn & Phelps, 1982; Langley, Simon, Bradshaw & Zytkow, 1987). Still, relatively
little work has investigated the domains taught in schools and formal education.
Some exceptions are studies of microworlds in physics (Champagne & Klopfer, 1982;

DiSessa, 1982; White, 1983: White & Horowitz, 1987).

As indicated, Inductive problem solving information can be present in the
environment, and the problem solver must attempt to find a general principle or
structure that is consistent with this information. Scilentific induction Is an important
example of this, as is medical and technical diagnosis in which a set of symptoms is
presented and the task is to induce the fault or cause. To paraphrase Greeno and

Simon’s description:

Solving an induction problem can proceed in two ways, and in most tasks
a combination of the methods Is used. A top-down method involves
generating hypotheses about the structure and evaluating them with
information about the observed Instances. A bottom-up method involves 1
storing information about observations and events and making judgments
about new events on the basis of similarity or analogy to the stored
information. To perform the top-down method, the problem solver requires
a procedure that generates or selects hypotheses, a procedure for evaluating 1
hypotheses, and then a way of using the hypothesis generator to modify or ' i
replace hypotheses that are found to be incorrect. To use the bottom-up *
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Shute, Glaser, Raghavan 3 r'ebruary 1988

method, the problem solver needs a method of extrapolating from stored
information, either by judging similarity of new stimuli to stimuli stored in
memory or by forming analogical correspondences with stored information
(1984, p. 82).

To a large extent, classie studies of induction have focused on inducing a rule or
classifying relatively abstract stimull into categories on the basis of feedback about
classification errors and other information (see Pellegrino & Glaser, 1980; Smith &
Medin, 1981). Given our concern for exploratory environments, we perceive this large
literature as pertaining, for the most part, to passive induction in which the learners
induce rules, make hypotheses, and classify and taxonomize observations on the basis
of sets of pre-determined instances designed by the experimenter. However, a more
active process is apparent when the learner can select variables, design instances, and
interrogate his or her existing knowledge and memory for recent events. In the latter
form of induction, we need a research paradigm that allows us to examine active
experimentation in which learners explore and generate new data and test hypotheses
with the data they have accumulated in the coursc of their investigations. Recent
experimental technology and computer modeling have made this type of
experimentation feasible (Bonar. Cunningham & Schultz, 1986; Michalski, 1986;

Yazdanl, 1986).

In our research program, we have been investigating the learning of topics in
elementary physics, basic electronics, and economics. In this chapter, we report on
the economics world, called Smithtown. The environments we design enable us to
investigate a range of inductive or discovery learning, from learning in purely

discovery environments to more guided discovery worlds. What we are learning from
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Shute, Glaser, Raghavan 4 February 1988

our work is that as students explore phenomena, they can be gulded and coached in
the interrogation of a subject matter, analyzing their own understandings and
misunderstandings, assessing progress toward thelr goals, and revising their problem

solving and learning strategies.

Our exploratory systems are designed to record, structure, and play back to
students their own problem solving processes. Such systems have been developed in
algebra and geometry, where they provide a structured ®"trace® of problem solutions
so that students can see the alternative paths that they have tried (Anderson, Boyle,
Farrell, & Reiser, 1984; Brown, 1983). Previous papers report early work (Reimann,
1986; Shute & Glaser, in press) and this paper describes an initial study of individual
differences in exploration, data collection, and hypothesis formation in an exploratory

world of microeconomic laws.

Smithtown is a computer program that provides a discovery environment for
learning elementary microeconomics. An ideal sequence of iterative behaviors in
Smithtown would include: exploring the world (informally), developing a plan for
investigation (more formally), choosing on-line tools or techniques for executing the
plan, collecting and recording data from the experiment, organizing the results, seeing
if the data confirm or negate prior beliefs, constructing a problem representation,
modifying the problem based on discrepant results, refining the problem based on
additional information, recognizing discrepancies between the result and expectations,

testing out findings in additional realms, and finally, generalizing a principle or law.

The focus of the study we will be discussing is on students’ "inductive inquiry
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skills,* which in this context refers to the students’ effectiveness in collecting,
organizing, and understanding data, concepts, and relationships in a new domain.
This system has been implemented on a Xerox 1108 Lisp machine, allowing self-
paced, individualized, and interactive instruction in a rich data source (see Shute &

Glaser, in press, for an overview of the system).

We hypothesize that discovery learning can contribute to a rich understanding
of domain information by enabling the student to access and organize information.
Furthermore, a proposition to be evaluated in this work Is that effective interrogative
skills are teachable if the particular skills involved can be articulated and practiced

under circumstances which require them to be used.

Intelligent tutorial guidance, in conjunction with a discovery world
environment, can potentially transform a student’s problem solving performance into
efficient learning procedures rooted in an individual's own actions and hypotheses. In
such experiential learning, students interact with new subject-matter situations,
comparing their observations with their current beliefs and theories, which may be
rejected, accepted, modified, or replaced (see Glaser, 1984). In the course of this
developing knowledge, students ask questions, make predictions, make inferences, and
generate hypotheses about why certain events occur with systematic regularity.
Significant experience of this kind in discovering principles in a field of knowledge
should alter the relation learners percelve between themselves and the knowledge,
and their way of behaving when they forget a solution procedure or encounter an

unprecedented problem (Cronbach, 1966).
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We report on the results of an empirical study conducted using Smithtown.
The report is divided into five sections: Knowledge Bases or "Experts® in
Smithtown, Maneuvering through Smithtown with On-line Tools, Learning and

Individual Differences, the Results, and a General Discussion.

Knowledge Bases in Smithtown

B

The primary purpose of the system is to help students become more methodical
and scientific in learning a new domain. The first knowledge base or "expert® we

will discuss deals with efficacious inquiry skills.

The First Knowledge Base: Inductive Inquiry Skills

An earlier study, conducted with Smithtown, yielded information about more

and less effective behaviors for interrogating and inducing information from a new

BAA

D )

domain (reported in Shute & Glaser, in press). This information was subsequently

-v

coded Into rules that the system monitors in conjunction with a learner's actual

v

behaviors. Thus, the system knows of sequences of good behaviors and also sequences

of ineffective or "buggy" behaviors.

! The system leaves a student alone if s/he Is performing adequately in the
environment. However, if the system determines that a student is floundering or
demonstrating buggy behaviors, the Coach will intervene and offer assistance on the
specific problematic behavior(s). For instance, if a student persists in changing many

variables at one time without first collecting baseline data into the on-line notebook,

.p ’..(\-'{"‘r 1.; ,‘-u- :-{w;"-,v’-’-’-ﬂ

the rule that would be invoked would look like the following (paraphrased):

T on I
.'v'v"."'

If - The student changes more than two variables at a time prior to
collecting baseline data for a given market, and it is early in the
session where the experiment number is less than four,
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Shute, Glaser, Raghavan 7 February 1988

Then - Increment the *"Multiple Variable Changes® bug count by 1 and
pass the list to the Coach for possible assistance.

-
If this rule does get fired and the number of times it has been invoked has :
surpassed some threshold value (e.g., four times), then the Coach would appear and b
o'

say,

"] see that you re changing several variebles at the same time. A better e
strategy would be to enter a market, see what the data look like be fore any N
variables have been .changed, then just change one variable while holding ‘I::
all the others constant.” o

In addition to the rules monitored by the system, we developed a list of

performance measures or "learning indicators® that enable us to determine what type

Ty EEed

8
s

AR e 8 s 0 A

of actions or behaviors yield better performance in this type of environment. A range

of learning indicators was created, from low-level, simple counts of actions (e.g., total

P

number of activities taken within Smithtown) to higher-level, complex behaviors (e.g.,

4

)

i
-

number of times a manipulation to an independent variable was made that showed

PR PCs

an obvious change in the dependent variables). These indicators will be discussed in

.(-

a later section and serve as one data source for our study on individual differences in

!
at¥a's

A-.l ‘l "

learning in Smithtown.
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The Second Knowledge Base: Economic Concepts in Smithtown

The second knowledge base or ®"expert® in the system knows about the
functional relationships among economic variables which comprise valid economic
concepts and laws. The system has a defined instructional domain, which s
decomposed into Key concepts that are organized in a bottom-up manner (i.e., from
simpler to more complex ideas). An understanding of these concepts should result
from the student’s experiments in ‘Lhe microworld. The hierarchy of domain
knowledge was developed by first, reviewing six introductory microeconomics
textbooks and determining the presentation order of information and second,
discussing the optimal ordering of these concepts for student learning In the

classroom with a college instructor of economics.

Although a student Is not required to learn the concepts in any prescribed
order, the hlierarchy shown in Figure 1 provides the system with information about
where the student Is likely to be with regard to his/her knowledge acquisition. That
is, the concept of "equilibrium® can be more readily understood after the laws of

supply and demand have been learned.

For the reader unfamiliar with this domain, we will now describe the basic

concepts in microeconomics that can be learned using Smithtown.

Supply and Demand. The buyer's side of the market is called demand. The
law of demand states that the quantity of a product which consumers would be
willing and able to purchase during some period of time is Inversely related to the

price of the product. If the price of gasoline goes up, consumers will demand a
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shute, Glaser, Raghavan 9 February 1988

smaller quantity of gasoline; if the price goes down, consumers will demand larger
quantities. If we graph this relationship, we get what is called a demand curve (see
Figure 2) showing how the quantity demanded of a product will change as the price

of that product changes, holding all other factors constant.

The seller's side of the market is called supply. The law of supply is that the
quantity of a product which producers would be willing and able to produce and sell
is related to the price of the product by a positive function. If the price of color
televisions goes up, producers will tend to offer more television sets for sale. If the
price of color television sets goes down, producers will reduce the number of
television sets they put on the market. If we graph this relatlonship, we get what is
called a supply curve (see Figure 3). A supply curve is a graph showing how the
quantity supplied of some commodity will change as the price of that commodity

changes, holding all other factors constant.

Equilibrium, Surplus and Shortage. There are many factors that influence
the price of a given product, but when a price is reached where the quantity that
sellers want to sell is equal to the quantity that buyers want to buy, we say that the
market is at a point of equilibrium (see Figure 4). Competitive markets always tend
toward points of equilibrium. If the market price is higher than the equilibrium
price, buyers will demand smaller quantities than sellers are supplying. This will
create a surplus. Surpluses of unsold goods will convince sellers to lower thelr price
down toward the equilibrium level. If, for some reason, the market price Is lower
than the equilibrium price, buyers will demand larger quantities than sellers are
supplying, thus creating a shortage. Shortages will lead to price Increases, and the

price will rise toward the equilibrium level.
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Changes in Supply and Demand. A change in the price of a good will
influence the quantities demanded and supplied and cause movement along a fixed
curve. A change to variables other than price will cause the entire curve (demand or
supply) to shift, depending on which variable is changed and the magnitude of the
adjustment. We refer to the variables in Smithtown that can be manipulated as
"town factors,” and they Include: per capita income, population, interest rates,
weather, consumer preferences, labor costs, number of suppliers, and the price of
substitute and complementary goods. For instance, if the population of Smithtown
was Increased from 10,000 to 25,000 persons, then the demand for automobiles would
increase, resulting in a shift to the right of the demand curve for cars. Alternatively,
if the number of suppliers of a particular good were to decrease, this would affect the
supply curve for that commodity, resulting In a shift to the left. These shifts are

depicted in figures 5 and 6.

New Equilibrium Point. Competitive markets tend to converge toward
equilibrium points. Equilibrium, once established, can be disturbed by changes in
demand and/or supply. If demand and/or supply change, a surplus or shortaée will
result at the original price, and the price will move toward a new equilibrium. A
shortage at the original price will cause the old price to rise to the new level and
cause changes in the quantities supplied and demanded. A new equilibrium will be

established at the second price and the second quantity and may be seen in Figure 7.

In addition to the above economic concepts, at least two more can be extracted

from the discovery world, although they are pnot explicitly recognized by the system:

cross elasticity of demand and supply. Cross elasticity of demand indicates how a
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change in one market affects the demand In a related market while cross elasticity of 3
- supply indicates how a change in one market affects the supply in a related market.

Maneuvering through Smithtown with On-line Tools :

Students can discover regularities in the market by manipulating variables, \E

observing effects, and using tools to organize the information in an effective way. M’

The on-line tools for scientific Investigations In Smithtown include a notepook for \l',f.

collecting data, a table to organize data from the notebook, a graph utility to plot .

data, and a hypothesis menu to formulate relationships among variables. Three Ef.

0w

history windows allow the students to see a chronological listing of actions, data, and :;:::
concepts learned. !

o

| X

First, a student selects a market to investigate from the *Goods Menu® and :'.;

)

informs the system of his or her experimental lnteqtlons by choosing variables s/he is ;

e

interested in from the "Planning Menu.* For each new experiment, the system asks :‘.:'.

the student if s/he would like to make a prediction regarding the planned 3: /
experiment. If the student chooses "No," the next menu of oi)tions is the " Things To ._
"

Do Menu.® If the student responds "Yes,* a window appears where specific ::
statements can be entered about predicted outcomes to a planned manipulation. For >
example, if the student’'s experiment was to increase the price of gasoline in order to
sece the repercussions in the market place, one prediction could be: "The quantity -

demanded [of gasoline] will decrease.” Explorations and experiments are directed \_’

from the "Things To Do Menu" where they are provided with 10 options. Each 'E.:

option Is described below. ;.5

1. See market sales information. This window displays information on :_’

the current state of the market. :-f

T
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. Computer adjust price. The computer will increase or decrease the
price, whichever brings the current market closer to equilibrium.

. Self adjust price. Provides the student with an on-line calculator and
allows the price of the particular good to be changed.

. Make a notebook entry. The student selects variables to record, and
the current values are automatically put into the notebook (see Figure 8).

. Set up table. The table package allows the student to select variables of
interest from the notebook, put them together in a table, and sort on any
selected variable, by ascending or descending order (see Fig.9).

. Set up graph. The graph utility allows a student to plot data collected
from his/her explorations and experiments. This provides an alternative
way of viewing relations between variables (see Figure 10).

. Make a hypothesis. The hypothesis menu allows students to make
inductions or generalizations from relationships in the data they have
collected and organized. There are actually four interconnected menus of
words and phrases comprising the hypothesis menu (see Figure 11). First,
the "connector menu® includes the items: if, then as, when, and, and
the. Next, the "object menu® contains the economic indicator variables
used by the system. The "verb menu® describes the types of change, like
decreases, increases, shifts as a result of, and so on. Finally, the
*direct object menu" allows for more precise specification of concepts
such as: over time, along the demand curve, changes other than price,
etc. As students combine words or phrases from these menus, the
resultant statement appears iIn a window below. A pattern matcher
analyzes Key words from the input and checks whether this matches
stored relationships for each targeted concept. For instance, if the
student stated: As price tncreases, quanlity demanded decreases, the
system would match that to the law of demand which {t understands to
be the inverse relationship between price and quantity demanded.

. Experimental frameworks. There are three “experimental
frameworks® which provide the student with easy maneuvering within
and between experiments. These Include: Change Good, Same

Variable(s); Same Good, Change Variable(s); and Change Good, Change
Vartable(s). They are used to change to a new market while holding the
independent variables the same, change town factor(s) within the current
market, or to change the town factor(s) and the market, respectively.

. History Windows. Three history windows are included in the system,
accessible by both the students and the system. As students continue to
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interact with Smithtown, histories accumulate, delineating the various
actions resulting from different explorations and experiments. This
summary is maintained in the Student History window. The Market
History window keeps a record of all variables and assoctated values that
the student has manipulated. Finally, there is the Goal History window.
This provides a representation of what the student has successfully
learned in terms of concepts targeted by the system.

Learning and Individual Differences
In this section, we describe an exploratory study of learning and individual
differences in performance in this intelligent discovery world environment. The
system was able to categorize sequences of student actions as being more or less

effective and intervened with a hint at times when the student was floundering.

This study was undertaken with two main goals in mind. One goal was to

evaluate Smithtown to see if individuals interacting with it actually acquired any of

.y
v r v _«

the economic concepts embedded in the environment (e.g., the law of demand,

i)

equilibrium point, and so on). The second goal was to determine the performance

.".".‘:P"’1 b )

Y5

characteristics of those individuals who were more successful in learning in this type
of environment as compared to those less successful. Another implicit goal was to

examine the computer architecture and interface features that facilitated or overly

s 0
»
r

constrained an exploratory environment.

S,
A

3
>

The kind of inference-discovery task that we are studying has been interpreted

" ’ , " l. l.
RO

within a problem solving framework by Klahr and Dunbar (1987) who concelive of the

5

FxA 4

1y

interplay between hypothesis formation and experimental design phases of the

A
£ &«

discovery process as a search between two problem spaces--a hypothesis space of rules

o,

and an experimental space of instances. "This means that, first, we need to account
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for the identification of relevant attributes, for, unlike the conventional concept-
formation studies, our situation does not present the subject with a highly
constrained attribute space for hypotheses. Second, we need a more complex
treatment of the instance generator, because in our context it consists of an
experiment, its predicted outcome, and the observation of the actual outcome® (p. 8).
KIahr and Dunbar place their subjects in a discovery context by first teaching them
how to use an electronic device (a computer-controlled robot tank called *BigTrak")
and then ask them to discover how a particular function works. They formulate a
general model of scientific discovery as dual search that shows how search in the two
problem spaces shapes hypothesis generation, experimental design and the evaluation
of hypothesis. Strategy differences among subjects were a consequence of the
efficiency of search in the hypothesis space. Successful subjects were classified as
theorists, and others who abandoned hypothesis testing in order to search the

experiment space were classified as experimenters.

In our investigation we also take a problem solving perspective and are guided
in our search for individual differences by certain general findings in problem solving
performance. For example, Sternberg (1981) makes a distinction between two forms
of metacognitive performance: global pianning and local planning. Global planning
refers to a strategy that applies to a set of problems and does not focus on the
characteristics of a particular problem; global planning refers attention to the context
or overall characteristics of the group of problems. Local planning refers to a
strategy that is sufficient for solving a particular problem within a given set; local
planning is less sensitive to general context and focuses more on the difficulty of

carrying out the specific operations of a problem solving task. Sternberg finds that
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better reasoners spend relatively more time in global planning of a strategy for
problem solution and.relatively less time in local planning. Such a distinction Is also
evident in studies of expert-novice problem solving. In studies of writing, Hay.s and
Flower (1986) point out that experts attend more to global problems than do novices.
I'xperts and novices attend to different aspects of a text. Novices focus on the
conventions and rules of writing; experts make more changes that affect the text's
meaning. The perceptions of the novices are more local or shallow, and those of the
expert more global and overall meaningful. The strategles used by novices are local
strategies concerned with a deletion and addition of words and phrases whereas
experienced writers are concerned more with strategies that involve changes in
content and structure. In physices (Larkin, McDermott, Simon & Simon, 1980; Simon
& Simon, 1978), differences in problem solving between novices and experts also
relate to surface and deep problem representations. The novice's representation of a
problem results in a local form of problem solving in which they work with equations
to solve the unknown. Experts, in contrast, work in a more top down manner
indicating that a general solution plan is in place before they begin the manipulation

of specific equations.

The above findings direct our attention to conceivable differences between good
and poor inductive problem solvers in terms of the global and local aspects of their
performance or their attention to specific versus more general features of the problem
solving task. In a discovery situation, taking a lead from Klahr and Dunbar, we
translate this distinction to data-driven performance in contrast to behavior which is

more rule or hypothesis- driven. In our task, an individual starts out with attention

to computer-generated observations and/or to subject-designed experiments. On the
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3
,"‘ basis of these data, he or she induces generalizations or hypotheses which drive the
;0 .|
N
i further data collection, data organization and experimentation. Based on the
h problem solving literature described above, we can anticipate that good reasoners
Y
*
3 N might display rule-driven performance earlier in their discovery activity, and use
o)
Bt rules as a performance goal in contrast to more sustained attention to data collection,
:‘j although the latter is necessary at certain points in the course of discovery.
o
")
>3
oo Furthermore, in addition to behaviors at a general level, we must also look at
..-r more direct performance components. We refer to specific performance heuristics
My
N.
o, manifested by good reasoners that may not be available to others. A good example
A\
in discovery performance is the heuristic of identifying one variable as a dimension of
.I
g
::,' examination and holding all other variables constant while the chosen one is varied
$‘.
)
o svstematically. Lawler (1982), in discussing computer based microworlds that use
Y logo language, refers to this as variable-stepping. He points out that Piaget judged
‘_' variable-stepping to be an essential compound of formal operational thought--a
o
> powerful idea because it Is universally useful and crucial to the process of sclentific
':Ej investigation. In this regard we look for individual differences in our discovery
29
| g worlds that relate to such performance procedures.
_?
" As a general caveat In the work reported here, it is Important to point out that
»
54
}f scientific discovery involves a whole array of processes including observing and
b l
gathering data, finding regularities that describe the data, formulating and testing
':-: the generalizability and limitations of these regularities, and formulating and testing 1
yh
“~
::; explanatory theories. In this study we are primarily concerned with a subset of these ]
KV processes, principally with discovery that starts with a dataset that can be a
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investigated and that derives descriptive rules, laws, or regularities from them. As
has been pointed out (Bradshaw, Langley & Simon, 1983) "the generation of data,
and even the invention of instruments to produce new kinds of data are also
important aspects of scientific discovery. And in many casés, existing theory, as well
as data, steer the course of discovery® (p. 971). In this chapter, we consider the path
from data to descriptive laws about data (not necessarily explanatory theories). This
subset of scientific work is important in discovery and in our concern withk individual
differences in induction from data, and the process by which inductive discovery is
carried out. Also to be Kept in mind is the fact that data-driven induction is not
completely "pure.®* Individuals come with previous conceptions of regularities in the
data and ther manipulate data and experiment on the basis of hypotheses they
generate. So. the discovery process that we study here will involve some combination

of data-driven induction and hypotheses-generated data which guide performance.

Subjects. Three groups of subjects were Involved in the experiment and
consistéd of the following: (1) Students who received traditional classroom
instruction in introductory economics, (2) A control group which received no
economics instruction, and (3) Students interacting with Smithtown. There were ten
subjects in each group. All subjects were from the Unlversity of Pittsburgh and none
had any formal economics training or previous economics courses. The economics
group were students who volunteered to participate In an experiment and who were
enrolled in an introductory microeconomics course. About half of the control group
consisted of psychology students who took the tests for class credit; the other half
consisted of students selected from those who responded to ads placed around the

campus for subjects who had no economlcs background. They took the tests and
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received a small payment. The experimental group were individuals who similarly
responded to ads placed around the University of Pittsburgh campus. They were
paid for their participation. It should be noted that the chapters covered by the
economics class during the testing interval corresponded to the identical
material/curriculum covered by Smithtown (i.e., the same introductory economic
principles involving the laws of supply and demand in a competitive market). All

subjects were debriefed about the purpose of the experiment at its conclusion.

Test Materials. The test battery on microeconomics was developed by an
economics instructor at the University of Pittsburgh. The tests were initially piloted
by individuals who provided feedback about the tests In terms of the clarity of
instructions, the timing of the tests, and the general level of difficulty. The battery
consisted of two tests, multiple choice and short answer. After test development, the
batteries were reviewed by an independent economics instructor for content validity

(i.e., completeness and accuracy).

1. MULTIPLE CHOICE TEST: Two alternate forms were created for the pre-

and post-test. This involved knowledge of various concepts and principles of
microeconomics. Subjects had to circle the best answer from the four alternatives

given. An example of a pre-test item from the test is:

The supply curve of houses would probably shift to the left (decrease) if:

(a) construction workers' wages increased
(b) cheaper methods of prefabrication were developed

(¢) the demand for houses showed a marked lncrease

...........
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(d) the population increased

A corresponding post-test item was constructed for each of the pre-test items.

The counterpart to the above question is:

Which of the following is likely to move a supply curve for beef to the right (an

increase)?

(a) a rise in the price of beef
(b} a decrease in the price of cattle feed
(¢c) an increase in the wages of farm laborers

(d} a decrease in the price of raw hides

2. SHORT ANSWER TEST: This test involved the same concepts to be

defined by the subject for both the pre- and the post-tests. It required elaborated
knowledge in terms of defining different concepts, coming up with instances of a
given concept, or drawing a curve on a labelled but empty grid. Two examples from

the short answer test include:

(a) What is market equilibrium?

(b) List as many important factors as you can causing the demand curve for a

good or service to shift over to the left or right.

Each answer on the short answer test was scored with reference to a list of

necessary and sufficient elements.

Procedv :s. Subjects from the economics group were administered a pre-test
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battery in their class prior to the lectures and readings on the laws of supply and

demand. They received about two and one half weeks of instruction on this part of

the curriculum; they were then re-tested in the classroom with the post-test battery.

The control group completed the pre-test battery and then returned in about K
two weeks for the post-tests. This interval corresponded to the pre- to post-test N

intervals for the other two groups.

The experimental group took the pre-test battery individually, then signed up

for three additional two-hour sessions. This translated to a total of five hours on the t
) computer (Session 1 = pre-test battery plus demonstration of the system, Session 2 :
= 2 hours on the computer, Session 3 = 2 hours on the computer, and Session 4 = 1 E
h

hour on the computer and 1 hour for the post-test battery). The sessions were spread -':
out over a two week period to correspond to the same time frame as the economics ;
group and the control group. Prior to the first real session with the system, students ;
v

were given a Guide to Smithtown in Session 1. This informed them of their goal ~:
(l.e., to discover principles and laws of economics) and how to best achieve that goal
.(1.9., to imagine themselves as sclientists, gathering data and forming and testing E

k]

hypotheses about emerging economic principles and laws). The Guide overviewed

Y]

some of the on-line tools available in Smithtown with examples provided on how to

use them. Finally, the Guide emphasized that the individual would probably make
errors or get stuck, but to try to learn from the mistakes. A glossary of terms

concluded the Guide and the students were free to take it home with them between
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Results
The first question addressed whether the three groups were initially comparable
on their pre-test battery scores (i.e., multiple choice, MC and short answer, SA).
Table 1 shows the summary statistics for the raw data while the mean percentage
scores for the pre-test battery and for the post- test battery, collapsed across MC and

SA, are plotted in Figure 12.

As can be seen in Table 1 and In Figure 12 , the three groups are initially
comparable, while on the post-test, both the economics group and the experimental
group surpass the control group. First we computed an ANOVA (repeated measures
design where the grouping factor was treatment group and the trial factors were: test
type and pre- versus post-test condition). The most important interaction that we
were interested in was: pre/post tests by treatment group, collapsed across tests, F
2,27 = 2.99; p = .067. This shows that the thrce groups did differ in terms of their
pre to post-test changes in scores. We then computed a Hotelling's T2 test,
contrasting all three pairwise combinations of groups on t.he pre-test battery, yielding

the following nonsignificant T2 values:

Economics x Control group: 2= 0.03 p=0.77
Control x Experimental group: T2= 0.11 p=0.42
Economics x Experimental group: T2= 0.03 p=0.80

After their respective interventions, the groups differed, however the economics
group and the experimental group ended up with equivalent post-test scores. It is
important to note that students in the experimental group spent only five hours
interacting with the discovery world compared to 2.5 weeks (or about 11 hours) of

classroom lectures and recitation covering identical curricular information.
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Hotelling's T2 analysis allows us to see particular differences between
independent groups on their test scores. The mean vectors for each group can be
extracted from the summary statistics, above. First, a comparison between the
economics students and the control group was made on their post-test scores: T2 =
1.02; p= .003. Thus, as expected, these two groups differed overall in their test
scores. Individual t-tests on the data showed that the difference is primarily
associated with the responses on the short answer post-test. The economics students
had much more complete and articulate responses than the control group (t — 4.28;
p = .0005). Second, the results from this analysis revealed that the economics group
and the erperimental group performed the same not only on their pre-test scores, but
on their post-test scores as well. T2— 0.031; p=.774. The experimental group, with
significantly less time on task, performed comparably with the students in the
traditional classroom env'ironment. No differences were found between any of the
individual tests. Third, the control and the expertmental groups were compared. It
was expected that there would be a difference between these two groups in their test
composites given the experimental groups' interaction with the system. This
comparison also showed a significant difference between the post-tests: T2 — 1.24;
p=.001. Individual t-tests were generated for each of the tests, and the short answer
post-test, agaln, was the major reason for the differences (t = 4.25; p = .0005). The

experimental group had much more complete responses than the control group.
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R
o Individual Differences in the Experimental Group
)
)
‘" . The results from the between group analyses suggest that overall, Smithtown
-
:v was effective in teaching a targeted set of microeconomic concepts comparable to a
|'||
L)
,: traditional classroom environment. We pow further examined the experimental
o
Ll
group data to see how differential interaction with this exploratory world affected
.l
IR
:. j subsequent learning. In other words, some individuals learned more than others from
4
L
o the system, and we wanted to know what it was that the more successful individuals
" did in comparison to the less successful persons in extracting and understanding new
X
'.: A knowledge. "Successful,® in this context, Is someone who started out with a low pre-
»
b Vs
) test score on the battery of economics tests and, after interacting with the system,
‘5: ended up with a high post-test score. Thus, the two interesting comparisons are
.
o)
L ]
e between those scoring: (1) Low on the pre-test and low on the post-test, and (2) Low
D "
“.
a on the pre-test but high on the post-test. We were not Interested in those who scored
S8
-., high on both the pre- and the post-tests as they seemed to have started out with
“l
\\.
_: some domain-related knowledge. Table 2 shows each of the ten experimental subjects
- with thelr assoclated pre- and post-test scores (percent correct).
Il
\:::
‘.'.-:_ Our interest is in comparing individuals who scored above the mean gain score
Ml
os and below {t. Thus, there is a pool of five subjects having large gains and five
j, subjects with small gains. These subjects will be discussed after the presentation of
':'_:
e the learning indicators.
o~
" Table 3 is a listing of the performance measures or learning indicators that were
-
_: computed for each individual across sessions. For this exploratory study, we
": collapsed data from the sessions into a single index for each indicator, although
b l"; i
{ {
W |
F 4
L
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changes over time will be informative to look at In the future. Two data sources
were used In computing these values: (1) Detailed computer history lists of all
student actions, and (2) Verbal protocols from each student about justifications for
each action, what they expected to see after a particular action, and what their plans

were for further experimentation.

Comparison of Subjects. BW, CF, HT and OY all began the experiment at
about the same level of knowledge, measured by pre-test scores, but after the sessions
with Smithtown, subjects BW and CF (more successful) greatly surpassed subjects
HT and OY (less successful) on the post-test battery. In terms of galn scores (l.e.,
post-test score minus pre-test score), BW and CF scored over one standard deviation

above the average gain score while HT and OY scored about one standard deviation

below it.
Pre-test Post-test
BW «+ CF 47.0 86.7
HT + OY 47.4 63.1

The question reduces to: What did BW and CF do, in terms of the indicators,
that HT and OY did not do? Table 4 shows standardized scores for these two pairs

of subjects,.

The largest differences (ordered) between these two groups are for the following
ten indicators: 22, 6, 24, 29, 9, 20, 16, 23, 28, and 13. The difference scores for all of

these indicators exceeds .90 standardized units.

The first observation is that the majority of these indicators are from the most
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cognitively complex set of behaviors delineated, l.e., those in the Thinking and
Planning category with six of the difference scores greater than .90. Next, there are
three main differences between the two groups in the Data Management category.
Finally, only one significant difference score is from the Activity/Ezploration
category. The progression of behaviors across these three categories goes from simply
being active in the environment (Activity/Exploration), to efficient (Data

Management) to finally, effective (Thinking and Planning).

We will now discuss each of these ten indicators in turn as far as their relation
to individual differences in performing in this type of environment. The between
subjects' differences will be illustrated in each of the three relevant categories with
excerpts from their verbal protocols and student procedure graphs, developed to

depict student solution paths.

Thinking and Planning Discriminating Indicators

This category represents the more complex learning indicators relating to
experimental behaviors. First, the data show that the subcategory of effective
generalizations was a very good discriminator between these subjects. Overall, BW
and CF attempted to generalize findings across markets (indicators 22 and 23) to see
if developing beliefs extended beyond the current market. This included both
gencralizing to related markets (e.g, tnvestigating the effects of a manipulation on
substitute or complementary goods) or testing beliefs out in unrelated markets to see
the limits and extent of a particular concept. To illustrate, BW (more successful) was
careful to try out his developing ideas in different markets to test his hypotheses. In

the first session, he was investigating the tea market, testing the idea that increasing
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.I
“ the population caused an increase in the quantity demanded (it actually shifts the
' demand curve). He increased the population and then said: ) v
W BW: Well, the quantity demanded did go up, it was 2550 last time, g
',: although I would have thought it would have gone up more, twice as many M
n people drinking tea [he had doubled the population]. So, quantity d
) demanded did go up. There was a bit of a shortage. Well, I'd be pretty '
. sure that it [shows the relationship between population and quantity
. demanded]. . . I think it would, but since I haven't tested it out, I can't :
\ really say. I would change the good to take care of that problem. ‘
; : "
‘ Since some of the town factors have global effects and some have limited e
. .
o effects, it is a good strategy to try out things in different markets. After looking at '
Y
Y the effects of interest rates on the compact car market, then switching to the donut K
. .
a market to see if interest affected anything there, BW concluded: .
y 1
i BW: OK, so I guess interest rates only in fluence expensive things like
" compact cars or big cars, but not donuts or hamburger buns. I bet there %
: are things that in fluence everything, like tncome in fluences everything. A
~ In contrast, subjects from the less successful group never generalized a concept A 3
Y .
15 R
X across markets (related or unrelated goods). For any given market, they would make :
"y -
a hypothesis from the current data set and presume that it held across all goods, '
> <
Y
-: without actually testing that notion out. In fact, due to the way the Hypothesis ‘
>
'; Menu was implemented in this version of Smithtown, it was possible to state a
'-, number of correct hypotheses from a single market, yet that is not good scientific
. behavior. -
x The next Indicator that differentiated the two groups had to do with using the N
D)
¢ Planning Menu to set up an experiment, specifying variables to investigate, and ::
¥ “
1
i actually conducting an experiment based on those stated variable manipulations b
'.} (indicator 20). Sternberg (1981, 1985) discusses two metacomponents, global planning R
A" . -
‘ S
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:,."
)
" and local planning, isolated from a complex reasoning task. In a study of planning
B0
'3 behavior in problem solving, he found that more intelligent persons scoring high on
W reasoning tests tended to spend relatively more time than low scoring persons on
S
global (higher-order) planning and relatively less time on local (lower-order) planning.
L

)

Poorer reasoners, however, seemed to emphasize local rather than global planning

’ relative to the better reasoners. Similarly, Anderson (1987) investigated individual
"f' differences in students’ solutions to Lisp programming problems and found that the
(-
\(' poorer students tended to be less planful in their problem solving activities. These
;;, findings are similar to our study in that the individuals who do engage in planning an
X

5

An! experiment are more successful (measured by our galn scores criterion) than those
e

}'; who do not. To Iillustrate, CF (more successful) decided to test the affects of
i.\

:::: Weather on the demand for icecream (where Weather can range from 1 -- cold and
'Pﬂ.-

4 wet, to 10 -- warm and dry}. From the Planning Menu she chose the varfables to
«”
‘e

"
/ :: investigate: price, quantity demanded, quantity supplied, surplus, shortage and
"
‘N

o weather. After changing the weather index from a medium, default value of 5 to 10,
A she said, "OK, then that means, I think, there should be an increased demand for
P

o

‘,: tcecream.” She collected and recorded the data, observed that, indeed, the quantity
N

-

aF demanded of icecream went up. and chose the framework: Same Good, Change
%,
'f.: Independent Variable so that she could stay in the icecream market and manlpulate
s

A
: ; the weather variable further. From the new Planning Menu, she selected the same
';f: N
- variables as before, then changed the weather, "I'm gonna make the weather really
Ny

" . . ;

e bad. I'll put it at 1. .. I think there'll be a surplus now, at the other extreme.” This
Ly

"‘: prediction was confirmed by her data. The other two subjects that were less
W) successful evidenced much less front end (higher-order) planning of an experiment
o
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-
and typically only selected a few (or frrelevant) variables from the Planning Menu. ,':
4
o
Often. changing an independent variable has effects on certain other variables, and !
.
those should be focused on in a given experiment. That is, if the population were ’
¢
increased, that could have an effect on the demand of a good, and in the long run, on ‘_"_
'
‘ )
the price of that good.
E The next discriminating indicator (indicator 29) reflects the richness and .
'
i tenacity of an individual's actions within an experiment, as measured by the average p
» A
! number of actions taken per experimental episode. A thorough, systematic s
» LY
» 9
3 investigation of a concept is indicated by more connected actions within an \
; ~
! experiment while more aimless behavior is seen by fewer connected actions. If a 'r,
: ¢
: person were to move around randomly in this environment, making changes, moving ::
Y . .
M [
. on to new things, and so on, with little or no thread of consistency, then each v
]
F-
[ experiment would have a small number of actions taken within a given market. -
1 T
/
4 Subjects BW and CF were not random movers. Their method of investigation was to i
y s
choose a market and do many things within that market, always observing the effects ,'-

of their manipulations, and recording them in the on-line notebook. Thus, the

P
',.vln-l L4

average number of actions within their experiments was much greater than for

WRTY W E_w_oEgTY ¥

subjects HT and OY. In addition, across the three sesslons., the more successful
subjects’ number of actions per experiment increased, showing that their experiments

became more complex as they galned additional domain Kknowledge. The less

TV T ¥ ¥ X
L R e S TR i 4
PP
R

successful subjects did not demonstrate a similar increase In complexity of

experiments over time; rather, their average number of actlons went up and down

A ]
?f'{“f"f S

across sesstons.
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Relevant to these results, Sternberg and Davidson (1982, see also Sternberg,
1985) looked at individual differences in the solution to insight problems where
individuals were free to spend as long as they liked in the solution process. They
computed a correlation of .62 between the time spent and the score on the insight
problems; thus, persistence and involvement in the problems was highly correlated
with success in solution. They argue that more intelligent persons do not give up,

nor fall for the obvious, often incorrect, solutions.

This activity is captured in "student procedure grapns® that we constructed for
subjects based on the idea of the problem behavior graphs of Newell and Simon
(1972) showing student actions and the resulting state of knowledge. A state of
knowledge is represented by a node and the application of an operator is represented
by an arrow pointing to the right. The result of the operation is the node at the
head of the arrow. Vertical lines connecting nodes indicate a return to a previous
state of knowledge because no new information was supplied. The operators and their
symbols used for our purposes are listed below. Each operator is recorded above or
below a horizontal arrow; an operator below the arrow indicates that the variable
was changed back to Its original default or baseline value. Most of the nodes

(rectangles) contain symbols representing the resulting operation, also listed below.

Operators & Variables Operations
P - Price R - Notebook Recording
G - Good S - Supply Curve
H - Hypothesis D - Demand Curve
FD - Town factor (demand shifts) / - Superimposed curves
FS - Town factor (supply shifts) (e.g.., S/D)
GR - Graph X - Error
T - Table X - Error

PP N T e T '

T SR A o
-I - -

T PE PRI R ‘ PR e .,_'
A o Y e e et St

»
a_a_a_eo_a_'

IR S N Y

3

A s



Shute, Glaser, Raghavan 30 February 1988

Learning Goals, or economic concepts that can be discovered are indicated by
symbols beginning with the letter *L*® followed by a number (e.g., the law of demand
- L5). Their meaning can be seen in Figure 1. Figures 13 and 14 are two examples of
how the student procedure graphs are used to visually illustrate the flow of problem

solving activity in more and less efficient individuals (in relation to indicator 29).

Figures 13 and 14 exhibit obvious differences In experimental behavior using
data from BW and another subject showing below average gain (subject SS) whose
performance well illustrates the contrast between focused and fragmented search.
The horizontal movement deplcted In the graph of BW's performance (see Figure 13)
shows much more focused and connected persistent behavior than the vertical, less
relevant movement in SS's experimental behavior, as seen in Figure 14. In Figure 13,
BW (more successful) began investigating the large car market by collecting data for
the market when income was $20,000. At nodes 94 through 97, he changed the
average income to $30,000 and collected additional data by changing price three
times. Next, he plotted a demand curve (98) with income at $20,000 and then at
$30.000, and at node 99, he made a hypothesis that when income increased, quantity
demanded increased, and the demand curve would move to the right. During the
period from nodes 100 to 102, he had the computer adjust the price back to
equilibrium. From 103 to 106, he changed income $40,000 and again had the
computer adjust the price back to equilibrium. The subject said, "It's only i{f you
change something other than price that you get a new demand curve.” Finally, at
node 107 he hypothesized correctly that demand curves shift as a result of changes
other than price (l.e., one characterization or description of what causes demand

curves to shift).
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j'.
Contrasting with the systematic, persistent performance evidenced by BW, g
’l'
. subject SS (less successful) spent a considerable amount of time generating hypotheses '-'
»
that were unrelated to the current experiment. Although both subjects were ~
wad
attempting to characterize a demand shift, Figure 14 and the following summary of .
. e-
actions clearly demonstrate an ineffective experimental procedure.
v ¢
oy
At node 73, SS entered the market for gasoline and from nodes 74 to 75, i::
o
changed the price from $1.18/gallon to $1.00/gallon and then down to $0.75/gallon. )
o
At (76), she hypothesized that "as the price of complementary goods decrease, the \
) hY
-~
quantity demanded increases.® This was incorrect. She then tried to graph a demand
»
)
curve (77-78) but was unsuccessful. During the period involving the nodes 79 to 80, 5.-
]
she hypothesized that as price increases, the demand curve shifts down and to the C::
o
left. This was incorrect. The subject then entered the coffee market suddenly and Y
)
-
without any apparent reason (81-82). At (83), she changed labor costs from 2
$4.00/hour to $20.00,/hour followed by three more incorrect hypotheses (84-88): ;_\'
[
e As labor costs increase, the quantity supplied decreases and shortage .'
increases. r.

e Quantity demanded has no relation to labor costs.

e Quantity demanded has no relation to the price of resources.

During (89-90) she decided to change the population from 10,000 to 50,000 and
then returned the labor costs to $4.00/hour. Finally, at (91), she again attempted a
hypothesis that as population Increases, quantity demanded increases and quantity

supplied increases. This, too, was not quite right.

A major difference in experimental behavior illustrated here seems to be one of
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staying with a problem until it is solved. Subject BW, when his initial hypothesis
turned out to be incorrect, did more experimenting to understand more precisely the
nature of the problem. In contrast, subject SS, who apparently was motivated by just

getting a hypothesis correct, tried different hypotheses, some of which were wild

A N A ALCNNCE NS

guesses as there was no relation between the stated hypotheses and the experiments

actually conducted.
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The next indicator to discriminate between more and less effective performance

was indicator 28: Changing only a limited number of variables per experiment where

the fewer variables changed, the better the subsequent performance. BW and CF

v

{more successful) were very conscientious in changing only one variable at a time per

s_ 8

experiment. Given the freedom of the environment, it often was a great temptation

-

to make changes to multiple variables concurrently, however, the ensuing results are

obscured as far as what was actually responsible for the state of current market

’

affairs. Subjects HT and OY (less successful) often fell prey to this temptation of \
making multiple changes. For example, while investigating the market for large cars :-5" ‘
and asked what he was going to do, OY responded, "I want to just go back and E-f_
c"ange some stuff.” He then proceeded to change interest rates from 15%% to 6.7%, :

O
number of suppliers (i.e., large car dealerships) from 10 to 20, consumer preference .
(1.e.. populartty of large cars) from 5 (medtum) to 10 (very high), and then back to 5,
per capita income from $20,000.00 to $25,000.00, and then Interest rates from 6.7% .

to 9¢. This was all done at one time without collecting any data in between the -'-:'.-
N
L)
changes. When he was asked about what he would predict would happen as a result :'.::

/

v 71
»
.

of all of the changes, he sald, "I think they'll still buy the cars, because the tncome

K {.

is higher now. . .bul the interest rates are higher. . .but since they're making more
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tncome, then I think they can afford it." OY's working memory capacity has
obviously been overloaded at this point and he fails to even consider the effects of the
number of suppliers, consumer preference, or any of the potential interactions. Upon
inspecting the market data, he sees that, in fact, there is an overall surplus of large
cars. This is viewed as confirmation of his prediction, but it obviously is confounded
by the fact that he had raised the number of large car dealerships in Smithtown as
well as the per capita income. These last two actions actually have opposing effects
whereby increasing the number of dealers would result in a surplus of cars while

increasing the income would cause a shortage of cars.

The last indicator falling under the Thinking and Planning category involves
collecting sufficient amounts of data before making a hypothesis of any of the

economic concepts (indicator 24). Good scientific methodology involves generalizing

~
>
’
-

a concept based on enough examples or instances of a phenomenon rather than

inadequate data which may include elements of chance, confounding variables, or

other things. BW (more successful) investigated the concept of "surplus® and its

,) l.n' ‘{\,”".’..l

relationship to price, quantity demanded and quantity supplied. In the following

At

5 4 vy
L

protocol, it is apparent that his investigation looked at the concept from many

AT

angles, collecting more than enough data before rendering a hypothesis. He had just

had the computer adjust the price of hamburger buns (raising the price),

N

BW: The price went up a lot, and there's a big surplus. . .. Well as I
found out before, as price goes up, the quantity demanded goes down,
quantity supplied goes up. So, by now the quantity demanded has gone
below the quantity supplied, and there's a surplus. So, the next time
around I think the price should go back down ‘cause there's a lot of
hamburger buns around here. They'll go on sale.

- s

He watched the price slowly converge on equilibrium, interrupting the computer
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" adjustments with price adjustments himself until he found the equilibritum price
g where, "at $1.55 it came out right. . . no surplus and no shortage.” He speculated,
N BW: OK, so I found out when there's no surplus and no shortage the

5 price won't change. I could phrase that tnto a hypothesis also. When
E’j there's a surplus, price decreases, and when there's a shortage, price
Y increases. . . . If surplus is greater than zero, then the price decreases.
ANyl
o When asked if he could characterize surplus any other way, he responded,
::" BW: Well, it's just quantity supplied minus quantity demanded. I can
state that. I've got enough examples! There’s a surplus when the quantity
u supplied is greater than the quantity demanded.
W He then used the Hypothesis Menu and formalized the above statement into a
A
" successful specification of "surplus.® Immediately afterwards, he used the same data
>,

. and logic to characterize "shortage.®

’,"_.' In contrast, HT (less successful) was content to make predictions and \
O
! : hyvpotheses based on single events and non- replicated experiments. This was not a
: good strategy for this subject to follow since her data management skills were neither

hr 5

efficient nor consistent. Moreover, sometimes she forgot or misconstrued what the

»

previous data were, not bothering to go back and retrieve the omitted data. For
instance, after spending a long time in the final sesston trying to determine the

influence of population changes on some of the dependent variables, she conducted an \

SR
~

experiment which involved decreasing the population of Smithtown from 10,000 to

S5 :
if 5.000. At that time, she was investigating the donut market, and the experimenter :
- {

! - asked what she expected to see as the result of this population decrease,

s HT: So, less people will eat [donuts].

N

Sd . . . .

- Erperimenter: What about quantity supplied and price?

: Es

- HT: When population decreases, demand. . . quantity demanded
decreases, and quantity supplied decreases. . . price tncreases.

“
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The market actually depicted the price and the quantity supplied remaining the

. same while the only change was in the quantity demanded, which changed as a

&

function of the demand curve shift. Next, HT's actions centered around price

-t

¥

changes, to get an equilibrium price for the donut market in the smaller sized town.

1 Yy

She did not replicate the experiment with the population change, and later, when

“a
.

5Ny
s

attempting to articulate a hypothesis, she remembered erroneous results and showed

¥

J-

little understanding of cause and effect among the variables: ;
HT: OK. so, I think when population decreased, the price decreased. ’

That's why there is changes belween quantity supplied and quantity N
demanded. Y

. N
Ezxperimenter: What was lhe first thing that happened? :

A

HT: I think quantity demanded decreased. . . and when quantity ﬁ
demanded decreased, price decreased. Quantity supplied. . . let's see, he
population decreased. . . quantity supplied decreased. e

Data Management Discriminating Indicators

Our more successful subjects, BW and CF, generally exhibited very good data

NN i 7

management skills, using their notebooks efficiently and consistently. Notebook

A M d
s

>

entries were typically made following variable changes and varlables were included in

l’ l‘ I'
.

their notebooks that had been specified beforehand in the Planning Menu. In

¥
(]

contrast, the less successful subjects (HT and OY) never became fully automatic in

RS e

entering data to their notebooks. They continued to forget to record important
information throughout the three sessions and had to rely on the history window to
re- insert forgotten data. (hey also excluded variables whose values were changed or
that were listed in the Planning Menu. In addition, they continued to omit baseline
data. This latter omission was a major problem when attempting to attribute causes

to market conditions.
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Indicators 9 and 13 have to do with the total number of notebook entries and

5.

*
-~

the number of relevant notebook entries made, respectively. In terms of just the

X o

total number of notebook entries, the more entries, the better the performance. In

. %
S,

terms of the type of notebook entries, the more "relevant" notebook entries made,

2

overall, the better the performance, where "relevant® variables are those specified in

¥ _F_

the Planning Menu as the variables the subject was interested in exploring and

St

Ll 20 &
J‘)”} Pd

L

collecting data on. This measure indicates whether the individual used the notebook

Xy

[/

efficiently in terms of recording important information.

l'

%

:’Q To illustrate the contrast in types of data recording skills, Figures 15 and 16
\

sttow examples of students with better and worse recording skills,

In Figure 15, BW (more successful) entered the tea market and, prior to
changing any variables, decided "to see what the initial conditions are." He
followed the observation with a notebook entry of the baseline data, seen in nodes 1
and 2. At (3), he increased the price of tea from $1.83/box to $2.50,/'box "to see tf

there’s a relation between price and quantity demanded and quantity supplied.”

This price change was also duly recorded in the notebook. During (4-5), BW

e A

continued to investigate this relationship by decreasing the price two more times,

following each change with a notebook entry. He then graphed a demand curve (6),

a A& . w omoa.

and successfully superimposed a supply curve, saving the graph for future reference.
This systematic performance led to the correct induction of the laws of demand and

supply (7-9): )

® As price increases, the quantity demanded decreases.

e When price increases, quantity supplied Increases.

.
.
.
?
v
d
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Our less successful subject, HT, demonstrated inefficlent data recording skills (see

Figure 16). Data were rather haphazardly entered into the notebook and the subject
did not systematically record variable changes. Figure 16 lllustrates some of the

multiple variable changes and subsequent failure to record sufficlent data into the con-

LA SR Sy g ",'.,’I’.."‘p -

-

line notebook. It shows that the subject started out in the coffee market and

changed the weather conditions from a medijocre value of 5 to a slightly less pleasant

'\'alue of 3 to sece If that would affect the demand for coffee, seen In nodes 1 and 2

A SNNY Y

She predicted that if the weather decreased (became worse), then the price of coffee

PRI

would increase. However, since she had failed to record any baseline data for the

b

coffee market, she was unable to make the approprlate comparison(s).

-

She then decided to ignore the weather influences, and at (3), changed the

population from 10,000 to 4.000 persons. She predicted that if the population

v
-
’
)
A
£,
‘.
&
!

decreased, then a surplus would result. But, as with the above situation, she had
failed to record the baseline data for when the population was 10,000, so she
reinserted the necessary data from the past experiments. Next, HT tried to graph

some data at node 4: price by quantity demanded and price by population, but in

Apel s

each case, there was only one data point per vartable, thus no line could be drawn.

She then switched to the market for gasoline (5-6) and ralsed the price from
$1.50, gallon to $4.00 gallon. Since she again had failed to record the data from the
market when gas was $1.50/gallon, she had to reinsert this information into the
notebook. With this additional data, she trled to graph it again and at (7), she
successfully plotted a demand curve. At node 8, she entered the market for large
cars. Her first action there was not to record the baseline data, but to change income

from $20.000 to $30.,000. She predicted that "t f the tncome increases, people will
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have more money to buy large cars, so the price of the cars will increase, and the
quantity demanded will increase, the quantity supplied will decrease, and there will
be a shortage.” When she saw the data resulting from her increase to the per capita
income, however, price and quantity supplied actually stayed the same while the
quantity demanded did, in fact, go up. Since she did not have the baseline data, she
was unable to tell if her prediction was confirmed or not since "increase® and
"decrease® have to be interpreted relative to some other data. Finally, at node 9, she
changed interest rates from 15C¢ to 10€¢, predicting that if interest rates decrease,
then price will decrease and quantity demanded will increase and quantity supplied
will decrease. She stated that she believed her prediction was confirmed, but later
realized that price had stayed the same. Her last action in this segment shows how

she tried to graph price against interest rates, but she did not have enough data.

Indicator 16 is the last major discriminating index in the Data Management
category and deals with the number of specific predictions made by an individual in
relation to the number of general hypotheses. In this case, the higher the ratio, the
better the overall performance. Studies have {nvestigated individual differences
between novices and experts in solving physics problems where an {important
distinction between the two groups is that the experts used a ®"working-forward®
strategy and the novices used a *working-backward® strategy (Simon & Simon, 1978;
Larkin, McDermott, Simon & Simon, 1980; Chi, Glaser & Rees, 1982). They suggest
that the novices may be more data-driven, while experts may be schema-driven in the
sense that their representation of a problem accesses a repertoire of solution methods.
Thus, the novices' limitations are derived from their inability to infer further

knowledge from the literal cues in the problem statement. In contrast, these
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inferences necessarily are generated in the context of the relevant knowledge
structures that experts possess. Predictions, in Smithtown, serve as a foundation or
stepping stones to more general, abstract principles and laws of economics. Our more
successful subjects seemed to be able to work forward toward a goal (i.e, they knew
where they were going) in contrast to our less successful subjects who often got stuck
at the more superficial or data level of Investigation. To illustrate, CF (more
successful) was interested in looking at the relationship between the coffee and tea
markets, "because they are similar.” First she increased the price of coffee and
collected data on the resulting decreased quantity demanded and increased quantity
supplied. Next, she chose the framework: Change good, keep independent variables
the same, changing to the tea market. Since the price of coffee had been increased,
more people had shifted to drinking tea so the tea market came up with an initial
shortage confirming her initial prediction that, "If the price of coffee increases, then
the quantity demanded of tea will increase.” She remained in these two markets
and went on to investigate the concept of a new equilibrium point and demand shifts.
She continued making predictions, observing the data, then proceeded on to
successfully articulate the rules underlying the higher level concepts. The lesé
successful subjects skipped among markets, failing to make sufficient predictions in
order to test out developing hypotheses that would have led to more economlic

concepts heing ultimately discovered.
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A Activity /Exploration Discriminating Indicator
o,
o The last category to be discussed has to do with the number of times the
'..‘
: N subject had the computer make a price adjustment toward equilibrium (indicator 6).
s
i
) :‘. From the beginning sessions, our better subjects immediately grasped the utility of
e
. letting the computer make price adjustments while both the pattern of the changes it
-::'." made and the effects on the market condition were observed. Subject BW (more
o
K successful) said, after his first computer change of the price, and when asked If the
R change was in accord with his expectations,
:,:'_: "Well, yes, I thought so. Quantity demanded for hamburger buns was
s very high, and there were very few hamburger buns, so, it seems that
o suppliers would be able to get more for them. So, the price went up and
' there's still a shortage of hamburger buns. If I let the computer adjust
l‘\-j’ the price again, the price will probably go up again.”
':'.:: He demonstrated an understanding that when the computer changed the price, the
‘ opportunity for observing systematic changes and relationships was provided.
:‘:: Although he did not have enough data to conceptualize ®equilibrium point,® he had
XN
'j:: started to understand that when shortages exist, prices go up. Our less successful
\b
. subjects tried to use the option: Computer Adjust Price, but they did not really
\J
v
'.‘}j grasp its purpose. It was revealed in the second session that subject HT (less
.
~::: successful) had no Idea what was going on:
- HT: Just now I had the "Computer Adjust Price."”
o Erperimenter: Yes. Do you understand what's going on?
: .
* HT: No, I have no tdea about that.
s
-',; Erperimenter. What happened when you chose that? How did it adjust
':-: the price?
I\
o
HT: So, the price now increased from $1.70 to $1 90, and the quantity
- demanded decreased, decreased just a little bit. The quantity supplied
Wy tncreased a little bit too. No surplus, and the shortage ts 6. Population
et is the same. So the price tncreased. . .
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Erperimenter: . . What would happen if you let the computer adjust
the price again? Would it go up, doun, or stay the same?

HT: I don't know much about the "Computer Adjust Price." It can
increase or decrease, reduce the price. . . .

The subject continued to have difficulty with this throughout the first two sessions
(or 4/5 of the entire time with Smithtown), not realizing the benefits of observing the

computer make price adjustments toward equilibrium.

Performance differences between our two groups were probably a function of
the interaction of all of the aforementioned performance indicators. The behaviors
that differentiated the subjects consisted of: generalizing concepts across markets
where the generalizations were a result of well thought out and executed plans,
having sufficient data collected prior to the generalization, engaging in more complex
experiments within a given market and not moving randomly among markets, (i.e.,
staving in an experiment long enough to extract valuable information), changing
variables in a parsimonious and systematic fashion, recording important data In the
notebook from different experiments, and generating and testing predictions that

could lead to the induction of economic principles and laws.
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General Discussion

The comparisons between the economics classroom an.d the experimental group
in terms of their pre- and post-test results suggest that learning in the exploratory
world is at least as effective as traditional classroom learning. In fact, when learning
time is compared, tue students interacting with Smithtown spent less than half the
amount of time formally learning economics compared to the length of time spent by
the students in the economics classroom. It Is possible that a group recelving
classroom instruction and the intelligent discovery world could do even better. This

remalns an empirical question.

Our second, more compelling concern, was with the experimental group. In
particular, we wanted to know how individuals learn or do not learn in this type of
environment, and on what measures the better and poorer learners differ. The
contrasting pairs of subjects we lllustrated differed mostly on measures relating to
thinking and planning skills (i.e., effective experimental behaviors) with fewer but
significant differences In terms of data management skills. The behaviors that

differentiated the subjects were the following:

1. Generalizing concepts across markets. The better subjects would try out
economic concepts in different markets to see {f they were supported
while the less effective subjects would not bother to extend an experiment
across markets,

o

. Engaging In more complex experiments within a given market and not
moving randomly among markets. Typlcally, the better subjects had
many more actions within a given experiment and Investigated fewer
markets overall compared to the less effective subjects.

3. Changing only one variable at a time and holding all others constant.
The biggest problem for the poorer subjects was that they persisted in
changing multiple variables simultaneously. The better subjects changed
fewer variables at a time, typically just single variables.
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Q. 1
' 4. Basing generalizations on sufficient data. We set as our criteria having at
"' least three related rows of notebook entries before using the hypothesis
* menu. The more successful subjects did not attempt to make general
K, hypotheses prior to collecting enough data on a given concept while the
i- less successful subjects were content to make careless and impulsive
‘g ' generalizations based on inadequate data.
-
: 5. Conducting an exneriment based on a planned manipulation or set of
o manipulations. The planning and inferencing abilities of the better
N subjects allowed them to set up an experiment and execute it thoroughly
| :‘ whereas advance (i.e., higher-level) planning by the less successful subjects
. ': was rarely evidenced throughout the experimental sessions.
N7 6. Generating and testing experimental predictions. The better subjects
o tended to be more hypothesis or rule-driven (working forward towards a
v, goal) while the less efficient subjects were more data-driven in
t experimentation. When evidence does not confirm a hypothesis, further ]
- experimentation is required to modify the hypothesis. The better subjects |
< generally recognized and implemented this approach, while others j
::: engaged in less systematic activities. ]
ﬁj 7. Entering data into the on-line notebook. Better subjects had more
- notebook entries overall compared to the less effective subjects. In
o addition, those entries tended to be more consistent with, and relevant to, h
-:'.‘ the focus of their investigation.
':j & Using the computer to make price adjustments of a good towards :
equilibrium. \
- 1
-’: L
o :
. Demographic information was obtained along with the pre-test battery from all )
-'-: {
v subjects, and two questions asked: (1) what science courses the subject had taken ‘
o since high school, and (2) what their major was. Subject BW (more effective) had 1
[S4 [
b
S taken just two science courses (physics I and II) and he was a sophomore, majoring in y
= 1
= math. Subject CF (more effective) had taken three science courses (physics I, II, and 1
N y
o~ )
&, I11) and was also a sophomore, majoring in electrical engineering. In our less effective 3
'f group. Subject HT had five science courses (physics, two semesters of Calculus, 'j
N Fortran and chemistry) and she was a freshman, majoring in pharmacy while subject 1
" ‘
~ )
- :
- !
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OY had three science courses (chemistry, blology and physics), was a sophomore,
majoring in electrical engineering. These pairs could have differed in their scientific,
investigative behaviors as a function of past academic courses or variables relating to
learning style differences. Thus, according to a hypothesis that different backgrounds
were a cause of the observed differences, we would have expected the less sclentific
subjects to have taken fewer science courses. This was not the case. In fact, the less
successful group had an average of 4 prior science courses while our more successful
group only had an average of 2.5 science courses since high school. In addition, each
of the subjects was a science major. Of the original ten subjects In our experimental
group, this same pattern was found. Dividing the subjects into two groups of five
each based on their gain score, the two groups had the same number of declared
science majors in each (i.e., 3 per group). However, the ®"less successful® group had
taken considerably more science courses since high school (total = 27) compared to
the "more successful® group (total = 8). Thus, the idea of differential exposure to
science training seems not to be a major factor in determining who will demonstrate

better scientific behaviors.

Although this study focused on contrasting subjects In a descriptive and
exploratory sense, the question arises if the findings generalize to the population at
large. As part of the Learning Abilitles Measurement Program (LAMP) at the Alr
Force Human Resources Laboratory, the first author is currently testing a large
group of subjects (i.e., basic recruits at Lackland Air Force Base, Texas) with a
modified version of the system which includes 44 performance indicators that are

automatically tallied in real time and summarized by the computer at the end of a

three and a half hour session. Using a measure of genceral Intelligence as the
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dependent variable (i.e, the AFQT: a composite score derived from the Armed

T

Services Vocational Aptitude Battery), listed below are the results of a correlational
study of the indicators with AFQT score that map onto the above descriptions of

major individual differences (N= 527):

1. Generalizing concepts across related or unrelated markets did not
3 correlate with AFQT scores in the larger study. Reviewing the code, we
[ found that our conditions for these two indicators were much too
stringent.

[ Rv]

. Engaging in more complex experiments within a given market was tallled
by the average number of actions per experiment. This indicator had a
significant correlation with AFQT score: r= .17; p< .001, therefore the
more connected actions taken in an experiment was associated with a
higher AFQT score. Related to the nature of the experimentation, we also
tallied the total number of markets investigated. Three regression
analyses were run on the data: forward, backward and stepwise, with
AFQT score as the dependent variable. In all solutions, *Number of
Markets® was one of the five most predictive variables with an inverse
relationship to AFQT. That is, the fewer markets investigated, the more
predictive of higher AFQT score.

g ML e

-ty v v w

3. The average number of independent variables changed at one time (l.e.,
per experiment) had a significant negative correlation to AFQT score (r=
-.23; p<< .001) implying that the fewer variables changed at a time, the
better the performance.

ol o

4. Making hypotheses based on sufficient data was estimated by the
indicator computing i{f the subject had at least three rows of related
notebook entries before using the Hypothesis Menu. This correlated ‘with

1 AFQT score in our larger sample: r—.30; p-< .001, thus the better
subjects relied on more data before formulating general principles and
laws,

Il

N

. When a subject specifies his her intentions for an experiment via a
contrived manipulation on a variable or set of variables in the Planning
Menu and actually conducts the experiment with those variables, this
indicator is incremented. There was a slgnificant correlation between
planned performance and AFQT score: r - .16; p<< .001 implyving that
the more intelligent persons tended to engage in more higher level,
advanced planning of an experiment.

6. Making and testing predictions of experimental outcomes and then
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observing the results for confirmation or negation of the prediction is :
effective interrogative behavior and tallied by this indicator. In this :
la'rger study, the overall number of predictions that a subject made was o
correlated with AFQT score: r= .18; p< .001. '#

7. The quantity and quality of on-line notebook entrles were two significant ;:
indicators discriminating among subjects. First, the total number of '\.':
entries in the notebook was significantly correlated with AFQT score: r= 3
.26; p<< .001, therefore the higher AFQT scores were associated with ,L
more notebook entries overall. Variables entered Into the notebook that ;-_:
had been specified in the Planning Menu was the second indicator, ;:
correlating with AFQT score: r— .30; p< .001. This implies that higher :
AFQT scores are associated with consistent behavijors; that is, formulating :

a planned set of variables to investigate and reliably entering those
variables into the notebook.

AP

8. The indicator tallying the number of times the student had the computer
make a price adjustment was not correlated with AFQT score in our
larger study confirming our suspicions that it is more of a cognitive style
preference than a learning skill discriminatcr.

A N N
.

<K |w

g

Other indicators from the larger study that significantly correlated with AFQT

gt

»

score included the following: (a) Total number of actions taken in the experimental

sessfons. This correlated with AFQT score: r—= .26; p<< .001 implying that the more

.’\I\f“(\v

intelligent persons were more active, overall, than the less intelligent persons. This

'I. .l.:‘-‘

q must be viewed in light of the other indicators relating to the quality of performince,

L
%

however, as it is not a matter of simply being "busy® in the environment, but active

W T
Rk

in a connected, directed, systematic sense. (b) Total number of economic concepts
learned. The r= .18; p< .001 therefore the higher AFQT scores were associated

with learning more concepts in the 3.5 hour session. Finally, (¢) The number of

L R

experimental frameworks utilized by the subjects correlated with AFQT score: r=

.27: p< .001, so the experimental frameworks were employed more by the successful -
‘.."
individuals as a planning procedure thai. the less successful persons. !\
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| <
| Thus, the larger study seems to corroborate, to some extent, the findings from ::
| ‘o

kS
‘ . the descriptive analyses, extending and more precisely delineating individual i\

.

LA AR A

differences in learning from this type of environment.

A T

LA

A limitation of the present study was the collapsing of data across sesstons for

,;
this initial investigation. This can result in a loss ’or information that is valuable for ::_;
looking at individual differences and changes in knowledge and skills over time.
Another limitation was that the use of difference scores on the economic tests as the :
measure of success was not ideal. That is because our primary focus for Smithtown 5-
A
was on the learning of good inquiry skills, and only secondarily on the acquisition of 3:
economic Knowledge. The ideal criterion (and data we plan to collect) should be the .
transfer of skills across domains; i.e., how well students perform in a new :,
environment with a similar structure/architecture but which differs in content from '_:s‘
Smithtown. Currently, there are several other systems being developed that fit these '\
Y
criteria, and further studies are planned which will investigate transfer of learning of :::
these inquiry skills to new domains. ,
In general, it appears that in the rather complex task involved in this study,

many of the behaviors that differentiated successful and less successful subjects are
similar to those identified in previous studies with both laboratory and more realistic
tasks. Individual differences in performance in our exploratory environment involved
the following dimensions: generalization, goal setting and planning, more or less
structured search, specific performance heuristics, and memory management. Better

subjects tended to think in terms of generalizing their hypotheses and explorations

beyond the specific experiment or market they were working on. They conceived of .‘:
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a lawrul regularity as a general principle and as a description of a class of events
rather than a local description. Better reasoners were more sensitive to the existence
to the existence of deeper explanatory principles in addition to local data
descriptions; they appeared to realize that discovery was not only a function of data,
but that they needed to generate some rule that could provide them with a goal for
their actions. In this sense they tended to be more rule or hypothesis-driven than the

less successful subjects.

Better reasoners also engaged in more connected actions-- more structured
scarch. They conceived of a particular market as a rich environment in which many
actions needed to be taken in order to develop a structured understanding;
disconnected probes did not assist them in their attempt at understanding. Less
successful subjects, on the other hand, moved more frequently between markets.
Their behavior was more fragmented and displayed a breadth of exploration, in
contrast to more depth-like search, in their attempt to establish meaning in a

particular context

Planning behaviors differentiated individuals where successful subjects planned
their manipulations and experiments. Given the opportunity, they would structure a
plan and then carry it out with specific information. The immediacy of carrying out
some action was more salient to the less successful subjects, comparable to jumping

to equations solving in physies problems.

The successful individuals In our study employed more poweriui heuristics

compured to the less successful Individuals. They manipulated fewer variables,
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holding variables constant while one variable was systematically explored. Less
successful subjects did not seem to realize the power of this heuristic and for them it
was a less salient activity. Successful subjects took their time to generate sufficient
evidence before coming to a conclusion while the less successful subjects were more

impulsive and attempted to induce generalizations based on inadequate information.

The necessity to manage memory was evident in the performance of the better
subjects.  They realized that they needed to store and display the information they
had collected. Their data management performance was goal- driven in the sense
that the data collected were relevant to the current focus of their investigation. This
contrasts with the poorer subjects’ data management behaviors which were mostly

inconsistent and often unrelated to an overall goal in their experimentation.

In regard to inductive problem solving, as Greeno and Simon state and as Klahr
and Dunbar d(‘scrib_e the interplay between rules and instances, the best learning
strategy is a combination of bottom-up and top-down processing. In our subjects,
this seemed to be the case: the better subjects would predict variable relationships
and then test those hypotheses out, concurrently exploring and collecting data which
led to further generalizations. Our less effective subjects seemed to be limited to a
more data-driven (or bottom-up) approach, often falling short of grasping the larger
picture. This is in accord with findings investigating novice - expert differences in

problem solving (e.g., Larkin, McDermott, Simon and Simon, 1980).

Furthermore, the importance of higher level planning In this inductive

discovery environment is in agreement with studies of Individual differences In
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"'_,' reasoning tasks (e.g., Sternberg, 1985).  Better subjects consistently planned an
o
N experiment and then executed it to completion, according: to plan, in sharp contrast
::' to the more haphazard, less planful approach applied by less successful subjects in
- thelr experimental methodologies.
v !
[
" In conclusion, we have described an initial study of individual differences in :
~ 4
\ L
b learning from an exploratory environment where students had the opportunity to 1
°
engage in active, discovery learning of economic concepts by manipulating variables
-
B d
v in a hypothetical town and observing the repercussions. Overall, the system worked
»
-.:
Ay as we had hoped: Tutoring on the scientific Inquiry skills resulted in learning the
[ Y
5 domain knowledge as evidenced by performance on the post-test battery.
.:_:
b We have begun to delineate skills and behaviors which are important to
.;“' scientific Inference and discovery learning.  Although there Is currently not very
‘
)
.-: much research being conducted in this area, the behaviors we have identified in this
of*
4
A
) chapter fit with findings from related research (e.g., Klahr & Dunbar, 1987; Langley
et al., 1987). In addition, these specific behaviors relate to individual differences
found in studies on probtem solving and concept formation. From an instructional
"’;
' perspective, the behaviors we have identified can serve as a focal point for relevant
,:-‘
A intervention studies  Related and complementary projects that are planned for the
<5 :
) Immedlate future include (1., Schauble & K. Raghavan, personal communication, :
s .
. December 15, 1987). (a) extending the analysis of Inference and discovery behavior
>
b across content domains, (b) studying the influence of preconceptions and qualitative J
.
NS understanding on discovery behavior, (¢) ldentifying Intrasubject varfability, (d)
N coaching on discovery behavior, (e) improving discovery behavior through training .
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and practice, and (f) implementing a generalized ®discovery shell® to make the
. discovery environment portable across topics. The work In the above areas should

vield useful educational tools and insight that can be coordinated with science

education.
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Figure 1

Hierarchy of supply and demand concepts
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Figure 15 -q
Student procedure graph of a more successful '_:.':'
subject showing good data recording skills ::::j
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& » Table 1: Summary statistics: means, standard deviations
\l

> PSYCHOLOGY ECONOMICS EXPERIMENTAL
MC SA MC Sa MC SA
PRE- M= 11.50 16.20 11.70 15.00 12.00 14.10
TEST SD= 2.88 $.77 2.31 3.83 2.87 3.93
POST- 13.70 17.90 16.00 25.70 15.20 25.30
TEST 3.65 5.17 2.36 2.54 2.90 1.89
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Table 2: Subjects' Scoresg on the Economic Tests

FEr.

(percent correct)

-
4

5,

i Subiect Pre-test Post-test Gain
gﬁ BW 53.7 89.9 36.2
'y Js 54.2 75.4 21.2
Q? ss 53.3 75.4 22.1
i‘ ML i 54.2 84.4 30.2
» HT 43.1 56.8 13.7
?T CR 77.8 84.4 6.6
;L JH 42.7 3.9 31.2
» CF 40.2 83.4 43 .2
oY 51.7 69.4 17.7

cs 42.7 70.4 27.%

Mean 51 76 25

Standard deviation 12 1l
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Table 3: LEARNING INDICATORS

1. 8 o L ]
1. Total number of actions
2. Total number of experiments
3.

Number of changes to the price of the good

Il. Exploratory Behaviors

4. Number of markets investigated

5. Number of independent variables changed

6. Number of computer-adjusted prices

7. Number of times market sales information was viewed

8. Number of baseline data observations of market in
equilibrium

111, Data Recording

9. Total number of notebook entries

10. Number of baseline data entries of market in
equilibrium

11. Entry of changed independent variablzs

12.

Number of reinsertions of changed incependent
variables

1V. Effici Tool U

13.

Number of "relevant®™ notebook entriez divided by

total number of notebook entries where “relevant’

refers to those variables specified :n the Planning

Menu.
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Table 3, page 2

14. Number of times the table package was used
‘correctly” divided by the total number of times the
table was used, where “correctly’ means less than 6
variables tabulated, and sorting was done on
variables with differing values.

15. Number of times the graph package was used

“correctly” divided by the total number of times the

7

Ej graph was used, where “correctly’ means plotting

7

%j relevant variables, saving graphs, and superimposing

‘l

graphs with a shared axis.

Y. Use of Evidence
16. Number of specific predictions made divided by the
number of general hypotheses made. The larger this

ratio, the more data-driven the inquiry.
17. Number of correct hypotheses divided by the total
number of hypotheses made.

18. Number of notebook entries of Planning Menu items.
19. Number of times notebook entries of Planning Menu

items were made divided by the number of planning

opportunities the subject.had.

20. Number of times variables were changed that had been

specified beforehand in the Planning enu.

- s - ar m Ma.

VII Effective Generalization
21. Number of times an experiment was replicated.
22. Number of times a concept was generalized across

{
unrelated goods. '
23. Number of times a concept was generalized across :

related goods.

------
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Table 3, page 3

>
Rd 24. Number of times the student had sufficient data for a
" generalization (i.e., at least 3 data points in the
- notebook before using the Hypothesis Menu).
ol
2
‘ . . .
ke il Effective Experimental Behaviers
)
!! 25. Number of times a change to an independent variable
k: was sufficiently large enough (i.e., greater than 10%
AN
ﬁ} of the possible range).
: 26. Number of times one of the experimental frames was
selected (i.e., chose "same good, change variable, "
-\

‘change good, same variables’™ or “change good. change
variable™).

P AL i‘l

27. Number of times the Prediction Menu was used to
specify a particular outcome to an event.

28. Number of variables changed per experiment. (In the
initial sessions, this should be a low number for
“effectiveness,” while in the later sessions, this
should be a higher number as the doma.n knowledge
increases and the student can deal with
interrelationships among variables.)

29. Average number of actions per experiment. This
should be an increasing function over sessions.

30. Number of economic concepts learned p=2r session.
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Table 4: Z-scores for Subjects on Each Indicator

. w, NN Wttt
i’.‘("f‘. [ J ('v,'i"-',f',f? ' L]

Indicator/Group BW+CF HT+0Y Difference

I. General Activity/
Exploration Levels

L 4

toepdd

ACTIVITY LEVEL

1. 0.32 0.73 0.41
2. -0.11 -0.29 0.18
3. 0.19 0.55 0.36
EXPLORATORY BEHAVIORS
4 0.17 -0.32 0.49
5 0.42 0.13 0.29
6 1.09 -0.70 1.79 »
7 0.69 0.80 0.11
8 0.22 -0.21 0.43
II. Data Management Skills
DATA RECORDING
9. 1.17 -0.01 1.18 =
10. 0.21 -0.31 0.52
11. 0.48 0.90 0.42
12. -0.37 0.33 0.70
EFFICIENT TOOL USE
13. 0.70 -0.20 0.90 =«
14. -0.67 0.10 0.77
15. 0.67 -0.06 0.73
USE OF EVIDENCE
16. 1.29 0.17 1.12 » .
17. 0.91 0.64 0.27 o
__________________________________________________ .‘-.\
III. Thinking and Planning Skills Qé
CONSISTENT BEHAVIORS N
18. 0.02 0.87 0.85 ’
19. 0.88 0.00 0.88 N
20. -0.13 1.01 1.14 = o
EFFECTIVE GENERALIZATIONS N
21. 1.26 0.93 0.33 e
22. 1.88 -0.59 2.47 N
23. 0.50 -0.50 1.00 » L
24. 1.52 ° -0.02 1.54 = -
EFFECTIVE EXPERIMENTAL BEHAVIORS T
25. 0.77 -0.01 0.78 -
26. 0.50 0.07 0.43 -
27. 0.66 1.13 0.47 -
28. -1.13 -0.19 0.94 » »
29. 1.01 -0.35 1.36 o
30. 0.86 0.59 0.27 v
&
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